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The Creativity Quotient (CQ) is a novel metric building on ideational fluency that
accounts for both the number of novel ideas (ideation) and the number of distinct
categories (fluency) these ideas fall into. Categories are, however, difficult to define
unambiguously and objectively. We propose that the principal contribution of this arti-
cle is an entirely algorithmic approach based on concept networks, and an information
metric defined thereon. It requires only measures of the similarity between concepts,
which may come from databases such as Wordnet, Wikipedia, Google, or corpus ana-
lysis tools. In the special case of strong, unique categories it reduces directly to CQ.

There are many ways one might approach the
measurement of creativity, of which one of the oldest
is ideational fluency (Thurstone, 1924). In an ideation
fluency test, a subject gives as many uses as they can
think of for some everyday object, such as a banana
or a piece of paper. But, should each response be scored
equally or should certain answers be weighted more
than others (Getzels & Jackson, 1962; Guilford, 1959;
Hocevar, 1979; Kaufman, 1981; Obonsawin, Crawford,
Page, Chalmers, Cochrane, & Low, 2002; Runco &
Mraz, 1992; Ward, 1969)? The development of scoring
procedures for creativity tests presents an unusual pro-
blem (Getzels & Jackson, 1962; Guilford, 1959). It is
intuitive that the suggested uses should not be weighted
equally, as is often done (Bryan & Leszcz, 2000;
Obonsawin et al., 2002). In particular, those uses offered
in distinctly different categories should be weighted
more than those that fall in the same category (Getzels
& Jackson, 1962; Guilford, 1959).

This article argues that understanding conceptual
networks is important for measuring fluency. Within
this framework, not all responses are equal, as some
have stronger connnections to other responses. Given
that one use of a banana is to eat it, feeding it to a
chimpanzee does not seem that original. Using it as a
source of yellow dye is less obvious. The first use is an
everyday use, familiar to many people already. The
others exhibit replacement creativity, where a compo-
nent in a system is replaced by something, as where
Salvador Dali replaced the handset of a telephone with
a lobster (Goldenberg, Mazursky, & Solomon, 1999).
The replacement might indicate how information is
organized within a person’s mind. If so, could this
imply general principles of organization that hold for
sets of people?

Snyder, Mitchell, Bossomaier, and Pallier (2004)
advanced a new information metric of creativity called
the Creativity Quotient (CQ), which accounted for
both ideation fluency and flexibility; however it
requires a definition of categories (flexibility) of use.
Although this is quite intuitive, it is somewhat difficult
to define categories in any truly objective, or unique,
way. For example, when considering uses for a piece
of paper, a paper napkin could be categorized as a fold-
ing use, similar to a paper airplane or origami. But it
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could also be put into the category of wiping things, as
in blotting paper or kitchen towel. Although this need
not seriously detract from the usefulness of CQ in any
practical application, it is valuable to explore the possi-
bility of developing a wholly objective measure across
subject cohorts.

Categories are of interest to neuropsychologists
concerned with cortical organization of concepts.
Stroke victims may exhibit very specific deficits; for
example they may lose the names of vegetables
although the names of fruits remain intact, or
they may lose their memory for faces, yet be able to
deduce who somebody is from a mixture of other
information. Categories for common inanimate and
animate objects clearly do exist, but they are often
hard to definitively localize within the brain. For
example, the Facial Fusiform Area (FFA), so-called
because it seemed, for a decade, to be the site of
recognition of faces, is now known to code for other
things too, while other areas carry memory about
faces as well (Haxby et al., 2001). Equally surprising,
the FFA responds to face contexts, even where there
is no face or the face is blurred beyond recognition
(Cox, Meyers, & Sinha, 2004). The most recent evi-
dence moves back towards the superceded notion of
a grandmother cell—that there is a cell that responds
to, and only to, a very specific idea, such as that of
one’s grandmother. Recently, cells responsive to very
specific subcategories, such as Bill Clinton or Halle
Berry (Quiroga, Reddy, Keriman, Kock, & Fried,
2005) have been discovered.

Choosing categories is even more difficult if
hierarchies as in, say, the taxonomy of animal species,
are admitted. In the paper-use ideation fluency test,
most subjects offer writing, painting, drawing, and
sometimes typing=printing as distinct uses. Do these
all belong in the category of surface marking or
absorption? But drawing could easily be placed into a
separate category (map, sketch, diagram, chart, plan,
etc.).

Even more complex is the way categories form
dynamically in the frontal cortex. So as images of a
cat are morphed into a dog, cells in the visual cortex
and subsequent temporal areas respond to these hybrids
in a graduated way (Freedman, Riesenhuber, Poggio, &
Miller, 2001). But in the frontal lobes, the categories are
distinct. Even for 40% cat, cat neurons do not fire. Yet
such distinct categories are dynamic and the same cells
can rapidly change to categories of lion and wolf versus
cat and Chihuahua. The alternative, presented in this
article, to determining categories subjectively is to derive
them from concept networks, where each concept forms
a node in a graph.

The next section examines the CQ creativity quotient
and related network analysis and approximation.

THE CREATIVITY QUOTIENT (CQ)

Snyder, Mitchell, Bossomaier, and Pallier (2004) derived
a CQ metric that accounted for both ideation fluency
(number of ideas) and flexibility (number of categories).
This measure allocates the responses from an ideation
fluency test into a number of categories, where the num-
ber of elements in each category is meaningful. The CQ
metric, Q, is given in equation (1), where N is the num-
ber of categories and nj is the number of elements in
each category.

Q ¼
XN

j¼1

log2ðnj þ 1Þ ð1Þ

Equation 1 can be understood intuitively or derived
mathematically as shown in (Snyder,Mitchell, Bossomaier,
et al., 2004). Equation 1 is exact given a hypothetical
unknown set of independant categories. It is also a limiting
case of the network model described below.

NETWORK METRICS

A subsuming approach is to begin with a network,
which describes the strength of relationships between
all concepts. So, for example, the connection between
lion and tiger is strong, the connection between lion
and tree much weaker (although they still share the
property of being living things). There are many
approaches that can be used to obtain the connection
strengths between each pair of concepts.

1

Through creat-
ing a hierarchy in which each concept is linked below to
the concept with which it has the strongest relationship,
an effective set of categories emerges, which may result
in deeper intuition into the meaning of the CQ metric.
The nature of this relationship is discussed in more
detail below.

An explosion of interest in networks has uncovered a
range of properties that seem to be highly relevant to
cognition. Concept networks give us a framework for
understanding fluency and creativity in terms of paths
and path likelihoods between concepts.

Language, of course, is full of categories, and a rich
source of theoretical analysis. The edges of the graph
between nodes (concepts) have a weight that can be a
similarity or a distance between the nodes. The edge
may also have a direction. But the relationship between
word and concept networks is not isomorphic. Words
have multiple meanings (polysemy and homonymy)

1At present, different methodologies for determining the distance
between concepts do not give identical results. This is a very active area
of research, driven by the explosive growth in search technologies, and
some convergence is likely.
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and individual concepts may be represented by multiple
words (synonymy). As such, there is considerable var-
iance in measures of word similarity, as demonstrated
by Seco, Veale, and Hayes (2004).

FROM CATEGORIES TO HIERARCHIES AND
GENERAL NETWORKS

It makes intuitive sense to think of the existing concept
structure of the mind as a network, as searching and
thinking seem to follow ‘links’ from one idea to
another. Abundant evidence points to there being
delays in retrieving information that somehow relates
to brain organization. Thus, for example, the names
of individual dogs (Corgi, Dalmatian, etc.) can be
retrieved faster, and with lower initial latency, than
examples from a higher order category, such as ani-
mals. At first sight, the process of following links might
seem to be slow, but recent work on small world
(Watts, 1999) and scale-free networks (Barab́asi,
2002) has shown that the number of links required to
move from any node to any other node may be very
small, e.g., 19 for the hundreds of millions of Web
pages (Albert, Jeong, & Barab́asi, 1999).

To determine the rarity of a response given the
responses that have already been made, the probability
of a use being given, and its associated rarity, can be
defined as a chain of conditional probabilities (Russell
& Norvig, 1995).

Consider a charcoal sketch as a use of a piece of
paper. One hypothetical way one might come up with
such an idea is through thinking about burning paper
to make charcoal and then applications of charcoal.
Once one has got to charcoal, other uses might easily
spring to mind, such as use as a toxin absorber. But a
charcoal sketch could be reached through

pðsketchÞ ¼ pðsketchjcharcoalÞpðcharcoaljburnÞpðburnÞ
ð2Þ

where the conditional probability with every other
use that has been given is taken into account, allowing
the interrelation of concepts under multiple contexts to
be included. Figure 1 shows an illustrative category tree
for two classes of bird. The parrots share some proper-
ties (e.g., nut-cracking=plant-eating beak) that the
birds of prey do not have. But they, too, have distinc-
tive shared properties (e.g., flesh-tearing beaks). Thus,
there is a higher level of mutual information, or
concept mutuality, among the parrots or falcons than
amongst a mixture of the two. The ideal categories
would have none of these dependencies between cate-
gories and there would be no mutual information
between them. Another way of expressing this is

through the multi-information, Im, which is shared infor-
mation across the whole set of concepts or responses.
So, the birds in the above example, share properties of
wings, feathers, and so on. This has a precise definition
in communication theory, given in Appendix A. Good
responses will have low concept mutualities.

Given the concept mutality, it is possible to estimate
the multi-information which is the shared information
across the entire set. This is obtained by calculating
the maximum spanning tree, across the network of
mutual information values between responses. The best
creativity potential values will minimize the multi-
information. This leads to a more general measure,
denoted Qeff and derived in the appendix, given by

Qeff ¼ N$ Im ð3Þ

In the ideal case where the responses do fall into
groups (effectively the categories) and where there is
no mutuality between members of different groups, then
the multi-information becomes the sum of the joint
mutuality of each group, and Qeff¼Q.

In summary, to calculate CQ without recourse to
heuristic category definition, the procedure is as follows:

1. Compute the concept mutuality between every
pair of responses;

2. compute the multi-information of the response
set using the maximum spanning tree;

3. use Equation 3 to calculate Qeff.

CALCULATING CONCEPT CONNECTION
STRENGTHS

There are, in broad terms, two ways of determining lin-
guistic networks. One is to use human subjects to deter-
mine linkages directly. Compendia, such as thesauri, are
a realization of this approach where human analysis of
language usage creates word relationship data. Wordnet
(Miller, Beckwith, Fellbaum, Gross, & Miller, 1990) is a
compendium of human judgments about similarities
between concepts, or syn-sets organized as a set of trees
with a few cross connections.

FIGURE 1 A conceptual tree.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
y
d
n
e
y
]
 
A
t
:
 
0
1
:
4
6
 
9
 
F
e
b
r
u
a
r
y
 
2
0
0
9



The other approach is to take large bodies of text and
use statistical methods to determine word relationships,
known as latent semantic analysis (LSA; Deerwester,
Dumais, Furnas, Landauer, & Harshman, 1990). There
is great interest in this domain, because it is language
independent, fast, cheap, quasi-objective, and underlies
new directions in search technologies. A recent
approach to LSA is to use the Web as the data source,
with Google (or similar search engine) as a method for
determining strength of connections between concepts.
The normalized number of conjoint hits serves as a
measure of similarity (Cilibrasi & Vitanyi, 2004).

LSA methods are plagued by problems of polysemy
and homonymy—words with multiple meanings. Some
words given as uses for paper (e.g., plan, cut, score)
may be interpreted in several ways that are not obvious
from the wording of the response itself: planning tasks
versus a (floor) plan, etc.; using the paper to cut some-
thing else versus cutting of the paper; using the paper
as a score sheet versus weakening it along a line. So
there might be a spurious connection between compu-
ters and potatoes via the links computer–chip (semi-
conductor or food)–potato.

Because, for this article, the source of concept
mutuality measure is immaterial, Wordnet was selected
where the polysemy=homonymy problem has already
been addressed. Concepts appear as syn-sets, and any
given word may appear multiple times. For simplifica-
tion, referred to henceforth as concepts (which are repre-
sented in the figures by single words).

Seco et al. (2004) provided a way of getting similari-
ties between any two concepts using Wordnet. The
degree of relatedness of two concepts is derived from
how many concepts they share. So tiger and lion share
all the features of cats and are, thus, closer than lion
and wolf, which share only the properties of large carni-
vorous mammals. By tracing the probability in traver-
sing the hierarchy from the most recent common
ancestor of both concepts being considered down to
each concept, a value for the information content of
moving between them is obtained. The information con-
tent for a concept comes directly from the number of
hyponyms, the more hyponyms the lower the informa-
tion content Ii of node i is, i.e.,

Ii ¼ $log
hi
w

ð4Þ

where hi is the number of hyponyms of concept i, and w
is the total number of concepts in Wordnet. This con-
stant acts as a normalizing factor changing the count
of the number of hyponyms that a concept, i, has, to
the probability of a concept in the minimum informa-
tion tree being subordinate to i. Thus, to say that one
has spotted a big cat conveys less information than to

say that the cat was a lion as a cat has more hyponyms
than does a lion. However, because of multiple inheri-
tance, the information content of each concept cannot
be summed to get a total information for a set of con-
cepts. Thus, jaguar and leopard are both large carnivor-
ous cats but having carnivore as the common hypernym
is arbitrary. One could equally well envisage leopard and
jaguar as hyponyms of spotted animal, along with fawns
and dalmatians.

ILLUSTRATIVE EXAMPLES

Existing datasets of ideation fluency test responses,
obtained in a pilot study that preceded (Snyder,
Mitchell, Ellwood, et al., 2004), were used to illustrate
the application of the theoretical framework. The main
data set was collected from a group of 62 subjects in
written form, each response consists of a word or phrase
that has been reduced for analysis, described as follows.

Data Analysis

The data were analyzed using software written in
Perl 5.8.2 (Wall & Schwartz, 1991), Cþþ (Stroustrup,
1986) and Java 1.4.2 (Arnold & Gosling, 1998), running
on a personal computer (Macintosh Quad G5; Apple
Computer, Cupertino, CA).

Significant obstacles in the analysis of the responses is
that a common concept may be given by a number of
respondents using different words, known as synonymy,
and that a given word may be interpreted in a number of
ways, known as homonymy or polysemy, depending on
how related the concepts are (Ullman, 1970). For exam-
ple, the responses set fire to, burn, and burning may have
the same intended semantic meaning, but were presented
in different lexical forms. To identify the frequency of

FIGURE 2 Histogram of paper uses. Note that more than half of
responses occur once only.
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FIGURE 3 The minimal spanning tree (MST) of a random response set (8.0).

FIGURE 4 The MST of a random response set with low CQ value (7.4).

FIGURE 5 The MST of a random response set with low CQ value (12.3).

68 BOSSOMAIER, HARRÉ, KNITTEL, SNYDER
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co-occurance of responses, such synonymous responses
were identified.

An additional factor that affects identifying co-
occurance of responses is distinguishing the point of
separation between concepts that are to be considered
equivalent, and those that are similar but considered
different. For example, the responses drawing and
sketching have common semantic elements but may
be considered distinct, depending on the degree of
similarity chosen to consider responses as separate.

Determining the degree of similarity between any two
concepts and the degree of similarity necessary to distin-
guish concepts is subjective and generally problematic.
To avoid these issues, words were identified as equiva-
lent only if they have a common lexical root, for exam-
ple plane and airplanes are considered the same, whereas
ignite and burn are considered separate. This approach
does not require subjective assessment of similarity,
and commonality between words for the purposes of
assessing the CQ value can be obtained from the exter-
nal corpus, in this case Wordnet.

Responses which clearly had no association as a use
of ‘paper’ have been removed. This filtering process
requires a somewhat subjective judgement; in order to
minimize subjectivity responses are assessed simply on
whether the assessor can identify any reasonable inter-
pretation of the response as a use for ‘paper,’ removing
any need to assess a degree of appropriateness for each
response.

Creativity and Fluency Trees

Figure 2 shows a histogram of the uses of paper gener-
ated by the subjects. Examples of uses can be seen from
the spanning trees of response sets given in Figures 3–5.
It is immediately clear that a small number of uses
dominate the responses. In fact, more than half of uses
appear once only in the set of 62 subjects. Thus, without
an external taxonomy or corpus, collecting statistically
meaningful results for these smaller uses would require
a huge number of subjects. The very large fraction of
unique responses introduces significant sources of error
if each such response is allocated to a category by a test
administrator. The approach of this article removes such
variability.

Figures 3–5 show a typical response network with the
connections between nodes weighted by the Wordnet
data and the associated minimal spanning tree (MST).
These networks were generated by evaluating the simi-
larity between each pair of uses in the set, and finding
the minimum spanning tree of the resulting clique graph.
The response sets in Figure 3 were produced by ran-
domly selecting words from the list of uses presented
in the sample data, where the probability of each use
being chosen is given by the frequency distribution in

Figure 2. Each response set has 20 words, excluding
paper, a typical number drawn from a wide range of
response sizes. The Qeff values for the three diagrams
are 8.0, 7.4, and 12.3. The response sets in Figures 3–5
were chosen out of 100 random sets, produced with an
equal probability of each word in the use list being cho-
sen. The theoretical minimum value of a set of 20 words
(excluding paper) is 4.3, and the maximum 20. These
values represent a logarithmic scale, such that compari-
son of values within this range allows a vast degree of
variation. Examining these trees, it is clear that the
choice of categories is actually pretty difficult. The
metric is very sensitive to the number of categories,
making this a particularly important issue.
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APPENDIX

The philosophy behind the CQ metric is one of estimat-
ing the number of possible ideas that might be created
from a given set of responses, analogous to the number
of pictures that can be created in the photoreceptor
mosaic of the eye, given contamination by noise. An
estimate of this number leads to a description length
or information capacity of the response set (Snyder,
Laughlin, & Stavanga, 1977; A. W. Snyder, Bossomaier,
& Hughes, 1986).

To make this more precise necessitates some statisti-
cal model. The simplest approach is to consider each
response as being drawn from a binary distribution
where the response either occurs or does not occur,
and to assume that both are equally likely.

If the responses were completely independent, each
response would be in a separate category and the total
number of possible response possibilities would be 2N

for N responses, or an information capacity of N. But
the responses are not independent. Thus the information
capacity falls below N and the quantity one needs to
measure it is, according to Shannon (1964), the joint

entropy of all the response sets, H(xi), where xi are the
response variables. To assess the independence requires
an external model of the world and the relationship of
concepts within it.

There are now two stages to the argument. First, we
show that this joint entropy is the approximated by the
CQ value Q. Then we derive the information theory
measure. The last section describes formally the multi-
information.

For a set of independent categories, Xc,

HðfxigÞ ¼
X

c

HðXcÞ ð5Þ

because the joint probability distribution breaks up into
a product of that for each category. Within the category,
the maximum entropy is achieved when all the elements
are independent (linked only by the properties of the
category), i.e.,

HðfxigÞ ¼
X

c

HðXcÞ ¼
X

c

Nc ¼ Q ð6Þ

with Nc the number of responses in each category.
Im the concept mutuality (the multi-information

approximated by the pairwise sum) is the normalized
mutual information between concepts. It is defined by

Im ¼
X

i

HðxiÞ %HðfxigÞ ð7Þ

But
P

iH(xi) is simply given by N, the total number of
responses. Thus, after rearranging

Q ¼ N % Im ð8Þ
Now, consider the two limits of just one category

and N categories. In the first case, Q¼N exactly as
for the direct measurement of CQ. In the second case,
the mutual information between two concepts asymp-
totically approaches 1 as the concepts become identi-
cal. Thus, an upper bound to Im must be
N% log2(Nþ 1) where the correction term log2(Nþ 1)
provides just enough information to label N distinct
objects. Substituting this value for Im gives
Q¼ log2(N), the CQ value for a single category
response set.

The Determination of Multi-information

Given a set of N variables {xi}, i¼ 1, 2, . . . , N where
each variable is a vector xi¼ [xi(1), . . . , xi(Mi)]. Each
element in vector xi represents one of Mi discrete events,
the vector itself is the sample space and the marginal
probability distribution over xi is Pi(xi), the joint distri-
bution over two variables, Pi,j(xi, xj) and the joint distri-
bution over all variables P({xi}). In this case, each
variable is a concept and events are occurrences of the
concept in different contexts (such as bodies of text).
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The entropy for a multivariate distribution of N
variables is defined as (?, ?):

SðfxigÞ ¼ $
X

fxig
PðfxigÞlogðPðfxigÞÞ ð9Þ

The multi-information is defined as (?, ?, ?):

IðfxigÞ ¼
X

xi

SðxiÞ $ SðfxigÞ ð10Þ

¼
X

fxig
PðfxigÞlog

PðfxigÞQ
j PjðxjÞ

" #

ð11Þ

In the case where {xi}¼ {x1, x2} we recover the defini-
tion of mutual information (?, ?):

Iðx1; x2Þ ¼
X

x1;x2

P1;2ðx1; x2 Þlog P1;2ðx1; x2Þ
P1ðx1ÞP2ðx2Þ

! "
ð12Þ

This article uses Seco’s (2004) concept similarity
metric on Wordnet as a proxy for I(xi, xj).
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